Investigating rainfall estimation from radar measurements using neural networks

نویسندگان

  • A. Alqudah
  • V. Chandrasekar
  • M. Le
چکیده

Rainfall observed on the ground is dependent on the four dimensional structure of precipitation aloft. Scanning radars can observe the four dimensional structure of precipitation. Neural network is a nonparametric method to represent the nonlinear relationship between radar measurements and rainfall rate. The relationship is derived directly from a dataset consisting of radar measurements and rain gauge measurements. The performance of neural network based rainfall estimation is subject to many factors, such as the representativeness and sufficiency of the training dataset, the generalization capability of the network to new data, seasonal changes, and regional changes. Improving the performance of the neural network for real time applications is of great interest. The goal of this paper is to investigate the performance of rainfall estimation based on Radial Basis Function (RBF) neural networks using radar reflectivity as input and rain gauge as the target. Data from Melbourne, Florida NEXRAD (Next Generation Weather Radar) ground radar (KMLB) over different years along with rain gauge measurements are used to conduct various investigations related to this problem. A direct gauge comparison study is done to demonstrate the improvement brought in by the neural networks and to show the feasibility of this system. The principal components analysis (PCA) technique is also used to reduce the dimensionality of the training dataset. Reducing the dimensionality of the input training data will reduce the training time as well as reduce the network complexity which will also avoid over fitting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Neural Network Scheme for Radar Rainfall Estimation from WSR-88D Observations

Recent research has shown that neural network techniques can be used successfully for ground rainfall estimation from radar measurements. The neural network is a nonparametric method for representing the relationship between radar measurements and rainfall rate. The relationship is derived directly from a dataset consisting of radar measurements and rain gauge measurements. The effectiveness of...

متن کامل

Development of a neural network based algorithm for rainfall estimation from radar observations

Rainfall estimation based on radar measurements has been an important topic in radar meteorology for more than four decades. This research problem has been addressed using two approaches, namely a) parametric estimates using reflectivity-rainfall relation (Z-R relation) or equations using multiparameter radar measurements such as reflectivity, differential reflectivity, and specific propagation...

متن کامل

Rainfall estimation using spaceborne microwave radar and radiometric measurements

The present paper deals with some of the recent remote sensing techniques for the estimation of rainfall, mainly from passive and active microwave measurements from space. The sensitivity analysis based on forward approach following the radiative transfer modelling using data from ECMWF and mesoscale models is presented. The inverse methods of retrieving rainfall from satellite microwave measur...

متن کامل

Precipitation Estimation from Radar and Radiometric Observations from Trmm Data Using Artificial Neural Networks

Artificial Neural Network (ANN) technique has been used for the estimation of precipitation, mainly from passive and active microwave measurements from space. ANN has been used to estimate precipitation using TRMM Microwave Imager (TMI) onboard Tropical Rainfall Measuring Mission (TRMM) satellite. A precipitation algorithm designed to generate rainfall estimates using a combination of TMI and T...

متن کامل

Diurnal Variability of Tropical Rainfall Retrieved from Combined GOES and TRMM Satellite Information

Recent progress in satellite remote-sensing techniques for precipitation estimation, along with more accurate tropical rainfall measurements from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and precipitation radar (PR) instruments, have made it possible to monitor tropical rainfall diurnal patterns and their intensities from satellite information. One year (August 1998...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013